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[. BASICS
Nvyquist Theorem

* Derivation:
— Electr. Eng. [1-4]
— Physics, Stat. Mech. [4]

 For passive device, at physical temperature
T, with small Af,

_nf
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e Limits
—small f: <P, ;> =kgT Af [1 — hf/(2kgT)]
= kgT Af

—largef: —0
— knee occurs around f(GHz) = 20 T(K)

* Quantum effect
— h/ky = 0.04799 K/GHz

— So at 290 K, 1 % effect at 116 GHz
at 100 K, 1 % effect at 40 GHz
at 100 K, 0.1 % effect at 4 GHz
30 K @ 40 GHz — 6.4%, 0.26 dB
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NOISE TEMPERATURE

* What about active devices? Can we define
a noise temperature?

 Several different definitions used:
— delivered vs. available power
— with or without quantum effect
I.e., does T, i < Payqil (“power” definition), or
1s T s the physical temperature that would

result in that value of P, (“equivalent-
physical-temperature” definition)?
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» For passive case:

hf
(Pavail (1)) = ST A (Nyquist with quantum)

Small hf/kT = (Payqii (f)) = KTAf

» Which do we preserve in defining T for
general (passive & non-passive case)?
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* IEEE [5]: “(1)(general)(at a pair of
terminals and at a specifice frequency) the
temperature of a passive system having an
available noise power per unit bandwidth
equal to that of the actual terminals.”
and
“(4)(at a port and at a selected frequency) A
temperature given by the exchangeable
noise-power density divided by
Boltzmann’s constant, at a given port and at
a stated frequency.”
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* We (I) will use second definition,
noise temp = available spectral noise-power
divided by Boltzmann’s constant.

* [t is the common choice in international
comparisons [6] and elsewhere [7].

* It is much more convenient for amplifier
noise considerations, at least for careful
ones. (See discussion below, under Noise
Figure and Parameters.)
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* So I:)avail = kBTnoiszeA]c
» And for passive devices,

hf
hf /(k_T)
e B -1

1

noise :g = Tphys

* Convenient to define “Excess noise ratio”
_ Tavail —To
ENRgqygl (dB) = 1010g10(T0] T,=290K

T=9500 K = ENR =15.02 dB
T=1000 K = ENR =3.89 dB

No matter what definition of noise temperature you choose,
it is helpful to state your choice.

NIET
MICROWAVE NETWORKS
& NOISE [8.,9]
» Assume lossless lines, single mode.
 Travelling-wave amplitudes a, b.

« Normalized such that P,y = |a|>—|b|?is
spectral power density.
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 Available power:

avail __ ‘éG‘
b, a, PG B

r

i Relation to
) noise temp: <

* Delivered power:

1

o,

A =l - =fal(1-[7i )
—
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Mismatch Factor

pe (- fa-|ref)

M, = .
1 Pavajl ‘l_FLI_,G‘Z

Efficiency

_PE (s L)
Plde' \1—11822\2(1—\1"3_\2)

1

_ s 0-I7)
- 1S, (8,8, -S,Su) +S)

NIST

NOoKSE

 Available power ratio (ekvailable gain):
0 = p2,avail/p1,avail (bl ’ b2 - O)

—_ =

__Isfhorf)
=78 -1

21
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» Temperature translation through a passive,
linear, 2-port (attenuator, adapter, line, ...)
1 2 ) ,
| | P =, B + £y (T,)
G T, T, =0, T+ (T,

T1 T2 Say T; =Ty, then T, must =T, so

T, =T,=0,T,+ f(T,)
fa—a):(l_aZI)Ta

and therefore

T, =0,T +1-,)T,

II. NOISE-TEMPERATURE NIST
MEASUREMENT NeEE

Total-Power Radiometer [10-12]

» Radiometer: measures “radiated” power. For us,
measures delivered power (in w.g. or
transmission line), & we convert to available
power & therefore to noise temperature.

* Two principal types of radiometer for noise-
temperature measurements are Dicke radiometer
and total-power radiometer [10].

 Total-power radiometer is most common for lab
use, & that’s what we’ll discuss.




NIST

NOoKSE

* NIST Coaxial Radiometer, General Features:

— Total-power radiometer, isolated (60 dB),
baseband IF, double sideband, 5 MHz BW,
thermistor detector.

LO Switch
Y Head
IF out
-t == < our]
lInput
Radiometer

IF Section
Multimeter
« Simple case: symmetric, NS
matched (all /’s=0)
Hot O
e ()
DUT —o

Matched — Pgg = Pavail Linecar > P=a+ bpdd =a+ bpava“ 7

2 standards (h,C) determine a, b:

Ph —a+ ka BTh Note: This could be written as
P, =a+bkgBT, Tout, rec = Crec(Tin,rec * Trec)
P —P,
So a=P,— bksBT, Bkgh=-"
Th —TC
Yy =D P P
Then Ty=T~+-X (T =T ), where Yo =2 Y. -_h
Y, D) P N P,

10
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* Not-so-simple case (unmatched, asymmetric)
Three complications:
—  Pug = MPayai
—  Pga(to rad.) = 77 pygg(from source),

and 77x # 77h # 770
a, b=a(l), bl

— Handle first two by measuring and correcting.

NIST
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— For dependence of a and b on 7, have three
choices:

- tune so that /|, = 7= I, (very narrow frequency
range, need special standards)

- characterize dependence on 7/ (broadband, but a lot
of work, and difficult to get good accuracy)

- isolate (easy, accurate, but limits frequency range &
difficult at low frequency)

11
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— If isolate, a and b are (almost) independent of
the source, and

(YX_I)
T Tomp
(Yg-D S am

M
+'s'’s

Ty =T M

x'Tx

where M, is the mismatch factor at plane X, 7,
is efficiency between plane X and plane 0, etc.

o
o R]efeiver, *®
, ' mnear
' 0
X
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Uncertainties

« Simple case (matched):

(YD)

gD

/ typically around 1 %
about 1 or 2%

Ty=Ty+

Te-Ta)'

small uncert,
but linearity is
a concern

Uncert “should”
be negligible

For the ENR, this = U(ENR) ~ 0.10 dB to 0.15 dB

12



» Simple-case uncerts (cont’d)

— drift: temperature stability/control important
(effect minimized by frequent switching to
standards)

— connector variability: hard to do much better
than 0.1%, easy to do considerably worse.

— Aa, Ab (due to A7): depends on details of
system, can make a crude estimate:

Tw~Te. 1AM ~0.050r0.1

So AT, ~ 0.05 or 0.1xT,

NIST
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— linearity: serious concern if T, very different
from standards, less (but some) worry if T,
near temperature of a standard.

0 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
T(K)

NIST

NOoKSE
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 Uncertainties (more careful case)
(Numbers are for NIST case) [13,14]
— Radiometer equation:
=T ol D r 1 4 (negligible)
amb™ M 7, (YS_D amb
— Ambient standard:
UM [ Tx T, s _ 01K 9
Tbx X Ni= Eri. En = yul=0.034%
NIST
NS

— “Other” standard:
UT Mo _ \ \u(TS> uTy)

‘ ‘ - =0.2%(NIST W.G.),0.8% (NI ST coax)
s

— Path asymmetry: (zero if connect to same port)

u . (Ty)
7" i _Talugim), utrin) =0.2% 10 0.56%
TX X
— Mismatch:
u
UM T Tal v My, uM M= 0.2%
TX X

14
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— Connectors:

Ueonn(Ty) _ U

T

1-Ta
y T

X

f(GH2), y,~ 0.053%100.069%

(depending on connector type)

— Other: Nonlinearity, imperfect isolation, power
ratio measurement, and broadband
mismatch/frequency offset all lead to small
(<0.1%) uncertainties for T, around 10 000 K
(for us/NIST).

NIST
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* Ug(T)/T as a function of T
Standard relative uncertainty (10)

NIST’s NFRad, GPC-7

0.03

up, /T, (type-B only)

0.01

U(ENR) = 0.02 dB

N

o ] I ] I ] I ] ™
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
T, (K)

o
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Adapters NoSE

e Measure T at 2, want T at 1.

Tom,

_ [ Adapter | ¢
DUT [ @& aptet —® 1 Radiometer

‘1 :2
Tz = a21TDUT +(1- a21)Tamb

_L-(-a,)T,

So

TDUT
aZl

For a good adapter, & = 0.95 — 0.99, depending on frequency.

Determine o from o = 1_821;1(;{1?;32) or [15,16] or ....
NUSL
III. NOISE FIGURE & NOISE
PARAMETERS

Noise Figure Defined

« Want a measure of how much noise an
amplifier adds to a signal or how much it
degrades the S/N ratio.

16
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 Define Noise Figure, IEEE [17]:
(at a given frequency) the ratio of total
output noise power per unit bandwidth to
the portion of the output noise power which
is due to the input noise, evaluated for the
case where the input noise power is Kz T, ,
where T, =290 K. (vacuum fluctuation
comment)

 Noise figure & signal to noise ratio[ 18]:
(S/N). 8. /290K Gx290K +N

- amp _
(S/N)gy GS,,/((GX290K+N

Gx290K

out amp)

NIST
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« Effective input noise temperature:

SnsNi, | Su=G S,
| N

=GN, + Ny, = GKp Ty + Ny

out
Define Ny, = GkgT,
So Nout = GkB(Tin + Te)
So Noise Figure becomes

; G T,
_ Noiseout _ G(Ty+Te) F(dB) = 10log, , 0_¢€

~ GxNoise in GT,

T+T}

0

Note: G, F, T, all depend on 7,

urce*

17
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Simple Case Measurement, all 7 ’s equal "~
Th G Nout,h =Gkg(T, +Tp)
T, G Nout,c = GKe(T + Te)
Combine & solve:
= —NOUt’h e e= Pour.cTh” NOUt’ h'c = Th"Te where Y = Noyn/Now.c
Kg(Th—Te) Nout,h_ Nout,c Y-l
T -YT
F :1+E:1+ h ¢
T0 (Y—I)TO
NIST
N
In terms of ENR:
T, =0T Y=y T Y-1)

if T=T, (290 K = ~ 63 °F), then
F(dB)= ENR, (dB)— (Y - 1)(dB)

Advice: Such approximations are useful in conversation or for

rough estimates & mental computations. For any “real” computation,
use the full, correct expression(s). It only takes a few seconds of extra
typing, and it can make a difference in the answer.

18
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Noise-Temperature Definition Revisited

* Quantum [: Equivalent black-body
definition vs. “power” definition.

n ‘ Noyt = GNip + Namp

“Power” definition: N= KT,
then Ni, = KTy, Noy = KToy 5 Ny = KGTg

s0 KT, = KG(T;, + Tp)

out —

and T,,=G(T,,+Tp)

NIST
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hf

“Equivalent black-body temperature” definition: N = R
e /KT -1

$0 Nout = GNin + Namp becomes (after dividing by K)

hf hf hf
W“‘—IZG ehf/k‘l',n_1+ Wk, _q )

e €

Solving for Ty , we would get

-1
h 1 ! : )
Tout = k {h{Ha((eh”kT" —1)+ (ehf/kTe _1)] }}

19
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* Quantum II: Vacuum-fluctuation contribution

— Continual “sea” of virtual particle-antiparticle pairs
everywhere.

— Cannot extract energy from them (from the vacuum),
but they can effect physical processes; & in particular
they add noise to active electronic devices [19 — 21].

— They result in an additional effective input noise
temperature of hf/2kg at the inut of an amplifier.

— This is very small, usually negligible at microwave

freqeuncies, T,,. = 0.24 K at 10 GHz, but it is there, &
there are some cases where it is not negligible [22].

— It results in a minimum output noise from an amplifier,
Nout,min = th/z.

NIST

NOoKSE

— Not yet a general agreement on how to include T . in
definition of noise temperatures.

— Can include it in T, (blame it on the amp) =
T

e

‘ Tout = G(TR + Tyac + Te)
T, |

T
or can include it in T,,.— m
— We’ll include it in Ty, [7, 22].
— Also a question of whether to include T, . as part of the
source Tk (as in [7]) or as a separate input source [22].

20
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— I prefer keeping it as a separate input [22].

T

vac

]

Tr

— One reason: case of large separation distance (especially
in remote sensing, for example)

T, \

— Note: get same/consistent results, independent of which
way you group things.

NIST
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Noise Parameters, IEEE Representation

; Ty, — VT, N
 Simple case was T, =%, yzNoiutah
- out,c

« But that’s just for one value of 7, Want
to determine F or T, for any /7y SO

parameterize dependence on /' .

» Several parameterizations in use; most
common are variants of the IEEE [23] form.

21
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» Equivalent circuit:

(W)
B
» (Noise out)/(Noise in) depends on impedance of input

termination, NF = NF(Zg) or NF(/g), & T, = T(Zgor
Iy,

I

opt

_ ]*S‘z
-|ry)

4 parameters: T, t=4R T/Z,, and complex 7

I,

opt

_]*S|2
1-|r)

e~ 'emin

NF = NF, + 4%
Zy 1+,

+7,

pt pt

pt -

Note: many equivalent forms of IEEE representation; this one is from [24].

NIST
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Wave Representation of Noise Matrix

» For microwave radiometry, wave
representation [24 — 29] provides more
flexibility.

 Linear 2-port:

b, a a, b,

—_ e
[\G J R

22
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» Noise correlation matrix is defined by
*
N; :<b| b >

~ ~ A* . . . . .
or Ni- =<b| b. > for intrinsic noise matrix

J J

* Four real noise parameters:

(8}

~

bl ), (|b

') (56

NIST
. (N}e=T= =
* Output noise temperature T,
b, a a, b, )
e:ﬁ - :ﬁ kBT2: ‘SZI‘ Z[NG+N1+N2+N12]
G i ‘ S i (1—\1"65\ )
] |
1 2 N, = b-1rr) KT,
‘I_FGSI‘Z
r, | ep
irs) )
N, :<‘Bz/521 2>
Ni, :2Re|:(1—11:i$1)<61(62/821)*>:|

23
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 So for T, we have

‘FG‘Z X +‘1_FGSI‘2 X, + 2

NG 2 2 2 Re[(l_rGSJ*FGXn]
(1_‘FG‘ ) (1_‘FG‘ ) (1_‘FG‘ )

e

where kX, = <‘61‘2>: kg X, = <‘62 /821‘2>a kg X, E<61(62 /Szl)*>
* Whereas IEEE parameterization is

2
_ t ‘FG _1_:')pt
e~ 'emin P 2
(1_|FG| )‘Hropt
* Can relate the two:
NIST
NESe
X’s = IEEE IEEE — X’s
1 2
t=xl+\1+s“\2xz—zRe[(1+s“)*x12], Xl:Te,min(JSllz_l)_{—tll_JrS]L]_‘ozt ,
opt
T :Xz—‘Fopt‘z[xl""su‘zxz_ZRG(S*lxlz)] |
(14l « 1 oAl
| 2 e,min ‘1+1_;m 2

tr* (l_gll—gpt)

Fopt _;7[1_ 1_2] R
XIZ S 1 Ie,min e .

:X2(1+‘Sll‘z)+xl_2Re(81*1xlz) ‘1+I_;m2
(X281 - X2) |

Notes:
X, = Teo
Bound implied by X, =0

24



Measuring Noise Parameters NET

* Many different methods [24, 26, 28, 30 —
41], most based on IEEE parameterization.

» Basic idea of (almost) all methods is to

— present amplifier (or device) with a variety of
different known input terminations (/& T),

— have an equation for the “output” in terms of
the noise parameters and known quantities
(I’s, T’s, S-parameters),

— determine noise parameters by a fit to the
measured output.

— Need good distrib. of /7’s in complex plane.

NIST
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 Can fit for noise figure [28]

T, T,
Noise
Source 1 B
4R, |1?)pt - F1|2
NF = NFmin +Z— 5 5
0 |+ Iy (1—|r1| j
Notes:

— Use tuner to get different /;, measure with T,
and T, for each 77 to get NF for that 7.

— Must correct for tuner to get T;, at 1. Must
calibrate receiver for each value of 7,
(or have isolator in front of receiver).

25



* Or can fit for output power [31, 42, 43]. RAST

This is the most popular method now.

In practice, first measure noise parameters
of receiver, 1] |l

Noise !

Tuner — Receiver
Source :

Then measure DUT + receiver
Yzl

Si
and extract DUT noise parameters.

NIST
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» Noise-matrix approach [28, 29, 38, 44] to
measuring noise parameters:

T, DUuT Ts
ey
Many 7,

—® T @
allat T, | a

2 = >/
Sz G —r 2 fslc
keT, = 1 1 ; [Ng+N,+N,+N,] | GS“Z
- I,
e 1= = kBXI
I_FGSI
15S,S, N, =k X,




, o NIST
* Noise-Parameter Uncertainties NEEE

— Monte Carlo method is probably the most
practical [33, 44 —47]
— Some general approximate features [44]:

* Uncertsin Gand T ;, (& F,;,) are dominated by
uncert in T,. 0.1 dB uncert in T,, = ~ 0.1 dB uncert

in Gand F

* Uncerts in 7 ;, are dominated by uncerts in /'g’s.
Uncert in Re or Im 77 is ~ 3 or 4X uncert in Re or
Im 7" (for 13 terminations).

min*

* t (or R)) is sensitive to just about everything.

* T, 1S not a major factor, because it is known much
better than T,. Note, however, that it could affect T,
or the amplifier properties.

NIST
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Measuring Noise Parameters on Wafer

* Just like amplifier noise parameters—only
harder.

» Harder due to probes and to device
properties.

» Complications due to Probes:

— Must characterize probes: on-wafer standards
—> larger uncertainties for /’s, S-parameters,
T, T

in> " out
— Restricted range of 77’s (due to loss in probe).

— Potential contact problems, vibrations.

27



» Complications due to Device: NST

— If measuring an on-wafer amplifier, no
additional device-related problems (assuming

it’s well matched).
But for atransistor:

— Matching problems, large S}, S,, = larger

corrections & therefore larger uncertainties.
— Large 7, near edge of Smith chart.

— Smaller noise figures/noise temps than amps.

*Procedure used at NIST [48, 49]: NIST

NOoKSE

@ Series of different terminations i
Radiometer o /
P=aR, +b '
/vé
@ Measure T,

| NS
I3, I3, and §; measured with on-wafer cal,
T,; measured on wafer

@ Compute Tyt Ty = oy +(1— )Ty s0 T, =21~ (1= %0 Taro
i

Cpeet IS (1-|nf)

R s (-]

where ¢

@ Measure T, = T, in reverse configuration

2 2
. . ‘Szl‘z (1—‘1““‘) ‘ I ‘- { i X }
Weighted) Fitto T, = ST+ - X, + X, +2Re| ———
® vesnorio T (-lmf)|[-nsf =78l ™ I-71,S,
and {5‘ 2121 PP 2
T(rev.config) = ! - ‘ Z‘ ( ‘ ZVLZ‘ JTZVLJSZS"'Q'L‘ X2+X1+2R{7SZS"'Q‘LX'Z*}
[1,‘[*]‘“1 \ ‘171"2.\_512‘ ‘I’I‘Z,LSZZ‘ 1-15 S

28
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« Commercial Systems [e.g., 42, 43]: similar
to general noise parameters (above),
except that reference planes are on wafer.

=
Sysem Cal i oo |- (2)

AR
(pur =

®

Receiver

DUT Measurement:

S

» Must therefore calibrate at those reference
planes on wafer. Commonly done at
probe tip, with an “off-wafer” cal set.

NIST
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» To get properties of device itself, must
remove effects of lines between the
calibration reference planes (P, and P,) and
the device reference planes (T, and T,). To
do so, measure auxiliary standards (short,
open) between planes T, and T,, and
“deembed” [50]. |

29
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* NIST on-wafer calibration (Statistical)
calibrates at center of through (M) and
translates back (to D). Would still need to
“‘deembed” to get down to T.

|

fissEasE n

|:1> D|V| 12 um back from ‘d_ 12 um
center of Thru DT

NIST
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IV. NOISE-PARAMETER
CHECKS & VERIFICATION

» So how do we convince ourselves that our
noise-parameter measurement results might
be correct?

« Will give three tests:

— measure noise parameters of passive device,
such as attenuator

— measure T,
— Cascade test

30



Attenuator Test ST

» Noise matrix of a passive device (such as an attenuator)
1s given by Bosma’s theorem,

(B6]) = kT (- ss7),
 So for an attenuator at (noise) temperature T,

X, =-[s.[ -[s.P)n
X, ZHL;‘S“‘)TE,
S,

Xlz Z—(S;'L*%S;Z)Ta
S,

* So, measure noise parameters of an attenuator & see if
you get the correct answers.

NIST
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» Other passive devices as tests (especially on
a wafer):
— Cold FET [51]
— Lange Coupler [52]

These have the advantage of being poorly
matched, & therefore more similar to the
devices of interest.

31
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T, Test [34, 38, 53] NEEE

—TIEev-

* T, test: Measure noise temp from input of amplifier,
when output is terminated in a matched load.

Matched T
Load, T, !

1

* Can show that for /| S,;S;, small,
><1

")

NIST
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e Full form is:

DUT

Matched Load
Tarm ’ FG

s Ll-mf), -

1 G ‘I—FGSZZ‘Z B "amb
T = 1 [Ng+ N, +N, +N,]
_‘ 1‘ NI :kBXI
=g+ te%S HEEY AN
(I_FGSZZ) ’ 1_FGSzz B

N, = ZR{SZS“FG kal’;}
(1 - Feszz)

32
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* So measure T, compare to value predicted from
the value of X, from the noise-parameter
determination.

 If working in terms of IEEE parameters, convert,
using

2
tn-9,7,

X, :Te,minQ31‘2 _1)""‘371? P

1+ 1,

2

t| 7,

opt

2 7 'emin 2
1+ 7,

opt

X :ST '_tl—;;n(l_SII—‘opt).
12 1" e,min ‘1+1_;m2

NIST
NBEsEE
Cascade Test [53]
» Connect an isolator 1 1: | 2
(or other passive 2-port) E | o
: ) | L |
to amplifier input « \/ s
& measure noise < s

parameters of combination.

« X’ parameters can be written in terms of X
parameters (amp alone) and the S-parameters of
amp and isolator.

» Using Bosma’s theorem and standard S-parameter
algebra, can show

33
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| | X =] XA A
| i ‘ _ R R SIS'Z ’ LR |2
~ {15 5|3 (-t )

_ alzal I Ql* I*al
A 2Re{(l_slsz.2)(susl+quszz)}

b

X/ = s xS 2Rl -85 %, Jem (118 s )

s,

! Slz (1 — 3152'2 )* Slzszlg
x12 = Qs 0 x12 = 0 xl_TI >
sii-ss) > Si-g8) A

— %I;ﬁsll"'slzszlz* _ 3'231 el P el
e (B8 Bl )

Note: could instead use an attenuator (for on wafer).
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» Approximate expressions (for isolator case):

1 1 %
| xs
\_ /)
~
X,S

X,,' 1s small and (approximately) independent of amplifier;
excellent verification test.
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Samples of Test Results [53]

100 E Trev Test 1
95
B X X X Measured T,
90 3 O © O Predicted T,
85 -
80 —
% =
3 5
= ]
70 -
65 —
60 —
55 -
30 \ \ \ \ \ \
7 8 9 10 11 12 13
f(GHz)
Error bars are standard uncertainties (16).
NS
T, test on wafer [54]
300 5
] 300 o
200 ]
] 2003 o
] ] ©
2 7 X o il © X
o £ 4 x e &
] % i - E % % x i x % % o % ¥
|00—: 100 —
] X X X NIST (direct measurement) ] © © ¢ Predicted from noise parameters
- 4+ 4+ NIST (forward measurements only) - X X X Direct measurement
4 O O O NIST (incl. reverse measurement) ]
0 T ] ¢+

10 15
f(GHz)

°

f(GHz)

Error bars are standard uncertainties (16).
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X,'(K)

Isolator Test, X;'

=
1o

o]

X Measured X'
O Predicted X|'
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1o
Pl
L=

Pl
o

280

10 11 12 13
f(GHz)

Error bars are standard uncertainties (15).

X,(K)

200 —

190 —

180 —

170 —

160 —

150 —

140 —

130 —

120 —

110 —

Isolator Test, X,'

NIST

NOoKSE

- X X X Measured X,'
O O O Predicted X,

100

10 11 12 13
f(GHz)

Error bars are standard uncertainties (16).
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20 —
Isolator Test, ReX,,'
10 — i %
0 b — o D m D _________
2. 1
Xﬁ -10 —
o
"] 3
-20 —
7 X X X Measured ReX,,'
230 — O O Q Predicted ReX,,'
40 \ \ \ \ \ \
7 8 9 10 11 12 13
f(GHz)
Error bars are standard uncertainties (15).
NS
10 —
5 Isolator Test, ImX,,'
. 12 X X X Measured ImX,'
37 O © O Predicted ImX,,'
e e i s
5 _
. 1
><2 -10 -
£ 7
-15 —
. o
-20
225 E 4
L e L B B A B
7 8 9 10 11 12 13
f(GHz)

Error bars are standard uncertainties (16).

37



NIST

NOoKSE

Contact Information:
Jim Randa

randa@boulder.nist.gov
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